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We discuss the use of a noninvasive in vivo optical technique, diffuse reflectance spectroscopic imaging
with oblique incidence, to distinguish between benign and cancer-prone skin lesions. Various image
features were examined to classify the images from lesions into benign and cancerous categories. Two
groups of lesions were processed separately: Group 1 includes keratoses, warts versus carcinomas; and
group 2 includes common nevi versus dysplastic nevi. A region search algorithm was developed to
extract both one- and two-dimensional spectral information. A bootstrap-based Bayes classifier was
used for classification. A computer-assisted tool was then devised to act as an electronic second opinion
to the dermatologist. Our approach generated only one false-positive misclassification out of 23 cases
collected for group 1 and two misclassifications out of 34 cases collected for group 2 under the worst
estimation condition. © 2002 Optical Society of America
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1. Introduction

Skin cancer is an increasing problem around the
world. According to the annual Cancer Statistics
Review, an estimated 42,000 new cases of melanoma
of the skin in the United States were reported for
1998.1 This number jumped to 47,700 estimated
new cases in the year 2000.2 Melanoma is expected
to be the cause of 7700 deaths in 2000.2 Nonmela-
noma skin cancers account for �40% of all the diag-
nosed cancers.3 Among the nonmelanoma cancers,
squamous cell carcinomas cause 1500 deaths in the
United States each year.4 Basal cell carcinomas are
not usually fatal and grow slowly; however, they can
penetrate deep into the bone and cause local destruc-
tion.5 Basal cell carcinomas could cause morbidity if
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beoğlu is currently with ESI, Inc., 13900 NW Science Park Drive,
Portland, Oregon 97229.

Received 20 October 2000; revised manuscript received 7 May
2001.

0003-6935�02�010182-11$15.00�0
© 2002 Optical Society of America
182 APPLIED OPTICS � Vol. 41, No. 1 � 1 January 2002
untreated. Almost all skin cancers are curable, if
detected early.

Currently, clinical dermatologists rely on visual in-
spection and experience to make an initial assess-
ment of the skin lesion state. If further visual
analysis does not provide a conclusive decision on the
lesion state, such suspicious lesions are sent for bi-
opsy analysis. Biopsy is unpleasant for the patient,
slow in diagnostic results, and costly for the hospital
on account of the wait time. Dermatologists would
greatly benefit from a fast and noninvasive technique
that could assist them in their clinical diagnostic de-
cisions.

Several groups have worked on a number of non-
invasive methods to detect abnormal cells.6–8 Rön-
ing and Riech worked on a skin cancer detection
system based on computer vision that registered le-
sions on multiple patient visits and compared the
successively collected lesion images with previous
ones to determine changes in color, shape, size, and
other features on the basis of asymmetry, border ir-
regularity, color variation, and texture inside a mole.9
Cooney et al. reported studies on the development of
an optical system for detecting oral cancers with
near-infrared spectroscopy.10 In this system a
Fourier-transform infrared spectrometer was used to
obtain a single spectrum from each malignant, be-
nign, and inflamed hamster cheek tissue. Feld’s
group reported research on polarized light-scattering
spectroscopy for measuring epithelial cell structures



ction
quantitatively in an attempt to detect and diagnose
precancerous changes in human tissues.11 Wallace
et al. discussed assessing pigmented skin lesions with
spectrophotometry and feature selection tech-
niques.12 Some of their successful features included
slopes, curvature, mean, and variance within regions
of spectra.

In this paper we investigate diffuse reflectance
spectroscopic imaging �DRSI�, a fast and noninvasive
technique, with oblique incidence,6 to identify benign
and cancerous or cancer-prone skin lesions for the
purpose of reducing unwanted benign biopsies.
DRSI with oblique incidence has an advantage over
normal incidence by gathering information from su-
perficial layers without penetrating deep tissue.6
This is of particular importance, since skin cancer
information is usually present in the top layers of the
skin tissue, and deeper layers only add to the back-
ground noise in the signal.11 In addition, oblique-
incidence DRSI is sensitive to scattering and is able
to separate absorption from scattering in homoge-
neous scattering media. Oblique-incidence DRSI is
used in a multifiber array mode such that spatial
information is also gathered along tissue surface.
We have combined the DRSI technique with image
processing and pattern recognition to provide the der-
matologist with a computer-assisted tool to deter-
mine the state of unknown lesions in clinical settings.

Fig. 1. Optical probe for light transmission. The source fiber tr
light off the skin surface is collected by a series of 13 optical colle

Fig. 2. DRSI system. The spectral information from the diffuse
system via the probe and the imaging spectrograph.
In the following sections we describe the equip-
ment and setup used in this study, images of skin
lesions collected in vivo, feature extraction and selec-
tion, effective features, and classification. The infor-
mation conveyed by the effective features is discussed
in Section 7.

2. Equipment and Setup

The image acquisition for the DRSI system is com-
posed of a light source, transmission �source and re-
ceiver� fibers, a spectrograph, a CCD camera, and a
personal computer. The CCD camera has a 512 �
512 pixel array of area 9.7 mm � 9.7 mm. A halogen
lamp �Dolan-Jenner Industries, 100 W� is used as the
broadband white-light source. The source light is
delivered to the skin surface via a source fiber within
a fiber-optic probe �Fig. 1�. The fiber-optic probe is
made from brass tubing and 200-�m-diameter,
low-OH optical fibers. The optical fibers consist of 1
source fiber and 13 receiver fibers. The source fiber
is oriented at 45° with respect to the horizontal axis.
The 13 vertical receiver fibers are arranged in a lin-
ear array spanning 3.5 mm. The receiver fibers col-
lect the diffusely reflected light from the skin surface
and deliver the collected light to the spectrograph
�Oriel, Multispec 257; Fig. 2�. The probe is posi-
tioned on the skin surface without pressure for image
acquisition. The outputs from the receiver fibers are

its the white light onto the skin surface. The diffusely reflected
fibers.

ected light off the skin surface is transmitted to the CCD camera
ansm
ly refl
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placed at the object plane of the imaging spectro-
graph. The spectrograph disperses the one-
dimensional �1-D� light from each fiber into the
spectral components between 518 and 760 nm. The
spectra from the 13 fibers are then projected in the
form of a two-dimensional �2-D� image onto the CCD
matrix �Princeton Instruments, Inc., Model 1530P�,
as shown in Fig. 2.

The vertical dimension of the CCD array repre-
sents the spatial distribution of the diffuse reflec-
tance in terms of fiber locations. The horizontal
dimension represents the spectral distribution for the
diffusely reflected light collected by each receiver fi-
ber. The personal computer controls the image-
acquisition parameters and records the spectral
images automatically.

3. Collected Images of in vivo Skin Lesions

Only the suspicious lesions, whose state the derma-
tologist could not determine by visual inspection, are
included in the sample pool. The images are subdi-
vided into two types of cancer groups, namely, carci-
nomas �basal and squamous cell carcinomas� �group
1� and melanomas �group 2�. The dermatologist is
able to separate the two cancerous subgroups, or sus-
picious lesions belonging to these subgroups, by color
and other visual textural characteristics; however,
she may not be able to separate the benign from the
cancerous lesions within each subgroup.

The collected samples consist of benign �keratoses,
warts� and cancerous �squamous and basal cell car-
cinoma� lesions from group 1 and of benign �common
nevi� and intermediate or potentially cancerous �dys-
plastic nevi� lesions from group 2. These samples
were obtained at the University of Texas MD Ander-
son Cancer Center in Houston, Texas. Among the
tested lesions, biopsy reports have identified 15 le-
sions belonging to group 1 as benign and 8 lesions as
cancerous for a total of 23 lesions. For group 2, 13
lesions are benign and 21 intermediate for a total of
34 lesions. The lesions are 2–8 mm in diameter.

Multiple �three to five� spectral images have been
acquired from each suspicious lesion and the neigh-
boring healthy skin. The images from the healthy
skin are collected away from the lesion site to prevent
signal interference from potential extended lesions
beneath the skin. In group 1 a total of 222 image
samples have been collected from 23 cases, 111 lesion
and 111 healthy images �73 benign and 38 cancer-
ous�. In group 2, image samples from 34 cases have
been acquired for a total of 340 images, 170 lesion and
170 healthy images �65 common and 105 dysplastic
nevi�. For each image the probe is removed and ran-
domly repositioned on the lesion or healthy skin sur-
face to obtain multiple and minimally dependent
images from different locations or orientations on the
skin surface.

4. Feature Extraction and Selection

For each image the individual spectra from the fibers
are first corrected for the instrument function by a
calibration factor. We obtain the calibration factor
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from the camera by turning off the delivery fiber light
and acquiring a calibration image, which is neces-
sary, since fiber material as well as mechanical
mounting may cause variations in individual fiber
response to the collected light. The individual spec-
tra from each fiber are separately filtered with a 1-D
five-point running-average filter and then intensity
scaled. The scaling operation compresses the image
intensities between 0 and 255 for an 8-bit-resolution
�256 gray levels� image. The images from different
lesion groups and classes look similar to the naked
eye. A sample diffuse reflectance spectroscopic im-
age is shown in Fig. 3.

During data collection the probe is placed on the
apparent center of the lesion surface. The total
probe contact area is 3.5 mm, which indicates that for
lesions smaller than this size, the edge fibers collect
diffusely reflected light from the surrounding appar-
ently healthy tissue. For this reason information
from the first and last two fibers �fibers 1, 2, 12, 13�
are removed from the analysis of all the images, to
allow a consistent analysis procedure for all the im-
age samples.

Feature extraction involves first identifying fea-
tures that discriminate among classes. In this study
a comprehensive list of features have been tested,
including 1-D signal features �spectral features from
a single fiber and spatial features from multiple fi-
bers� and 2-D texture features taking advantage of
the combined frequency and spatial information.
New features that capture the specific characteristics
of the images acquired by the DRSI system have been
introduced.

The classes to be separated must contain distinct
within-class similarities and between-class differ-
ences. Features depicting these similarities and dif-
ferences can then be extracted and used for image
classification. Visual inspection of the lesion data

Fig. 3. Sample image. Horizontal axis, location of fibers. Ver-
tical axis, wavelength at which the light was collected. Different
shades of gray in the image represent the relative intensity of the
received light. �Correct aspect ratio is not shown, for visual clarity.�
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reveal only subregional local variations among the
spectra belonging to the classes �see Fig. 4 for spectra
from group 1 and Fig. 5 for group 2�. Using infor-
mation from specific spectral ranges instead of the
entire spectrum allows the extraction of small differ-
ences between the classes that would otherwise be
averaged out and missed when the entire spectrum is
used. Using spectral ranges rather than the entire
spectrum permits extraction of unique features effec-
tive at particular wavelength ranges.

To find regions and widths of regions that provide
information for optimum class separation, a region
search algorithm �RSA� has been developed to extract
features at various spectral locations and region
widths �1-D analysis�. The results for each of the
tested features are then plotted on separate scatter
plots with each data point labeled according to the
class to which the spectral subregion belongs. A sta-
tistical discriminant analysis is then performed to
test the success of the extracted features in separat-
ing the classes, as further explained in Section 5.

Similarly, image block analysis �2-D� has been car-
ried out with the same RSA. Features from subim-
ages, obtained by means of combining information
from selected fibers and wavelengths, have been
tested with a moving window and varying window
sizes along the length of the image to determine 2-D

Fig. 4. Sample intensity-scaled single-fiber spectra from

Fig. 5. Sample intensity-scaled single-fiber spectra from benign o
in group 2.
regions that yielded information for maximum sepa-
rability. The window width is kept at 9 pixels cor-
responding to the maximum number of nine analyzed
fibers. The window length, Li, is changed from 5 to
508 pixels as we search for the optimal window length
and location for each tested feature. With this pro-
cedure, different optimum subregions are found for
different features. A schematic diagram of the re-
gions searched by the RSA is depicted in Fig. 6.

Fisher discriminant value and the area under re-
ceiver operating characteristic �ROC� curves are used
as two measures of feature effectiveness. Fisher dis-
tance is a measure of class separability.13 The mean
and standard deviation of the feature values in each
class are used to compute the Fisher distance. For a
two-class problem, the Fisher distance is computed
by

Fbc � ��b � �c����b
2 � �c

2�1�2, (1)

where �b is the mean of the feature values for the
benign class, �c is the mean of the feature values for
the cancerous class, �b is the standard deviation of
the feature values for the benign class, and �c is the
standard deviation of the feature values for the can-
cerous class. �In group 2, �c and �c correspond to the
intermediate lesion parameters.�

ign �left� and cancerous �right� skin lesions in group 1.

mon nevi �left�, and intermediate or dysplastic nevi �right� lesions
r com
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As can be seen from Eq. �1�, the Fisher distance
increases as the difference between the means of the
feature values for the two classes increases or as the
separability between the two classes increases.
Similarly, as the standard deviation of the feature
values in each class decreases, the Fisher distance
increases. This indicates that the extracted fea-
tures can be ranked with the Fisher distance, and
features that generate relatively high Fisher dis-
tances can be considered effective.

In this paper we report the product of the Fisher
distance and the area under the ROC curve as a
measure of feature effectiveness for a more reliable
feature-ranking scheme. ROC curves characterize
the true positives and false positives for different
threshold values on the scatter plots. The area
under the ROC curve describes accuracy14 and rep-
resents the efficiency or performance of the feature.
For good separation, the area under the ROC curve
must be maximized. The ROC curve is plotted as
the true-positive fraction versus false-positive frac-
tion at different threshold values. The ROC
curves represent sensitivity versus �1 � specificity�.
Sensitivity is defined as the fraction of correctly
identified �true� positive events �cancerous �group
1� or intermediate �group 2� lesions	 over all the
positive events. Specificity is given by the total
correctly identified �true� negative events over all
the negative events �benign lesions�.15 The fea-
tures are arranged in descending order according to
the product of the Fisher distance and the ROC
area. The effective features are selected from the
top of the list with the highest product values. The
selected features are tested for correlation. The
features contributing least to separation �features
corresponding to the same outliers in scatter plots�
are not selected.

5. Effective Features

The ideal features separate classes with 100% sensi-
tivity and specificity. In reality, perfect separation
is rarely achieved. The goal, then, is to identify dif-
ferent features that provide for separability of classes
with minimum overlap for different data samples so
that when multiple features are combined, classifica-
tion can be performed successfully.

Fig. 6. Schematic diagram of the region scanned by the RSA.
The width of the window corresponding to fiber number was kept
at 9 pixels. The length, Li, and location of the window were varied
to find the optimum region and width of region for a given feature.
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Image texture features were studied to identify ef-
fective texture features in the spectroscopic skin im-
ages. Broadly speaking, image texture is defined as
the visual effect produced by spatial distribution of
tonal variations within small areas.16 A wide collec-
tion of image texture features based on statistics,
co-occurrence matrix, wavelet decomposition, frac-
tals, and other geometric relations within the images
were extracted and examined in order to obtain those
features whose distributions were relatively nonover-
lapping for the benign and cancerous cases �see Ta-
bles 1 and 2 for a list of examined features�.

Tables 3 and 4 summarize the effective features
both in 1-D and 2-D �texture related� found for groups
1 and 2, respectively. For group 1, wavelet-based
energy, wavelet-based skewness, polar curvature,
mean, skewness and volume-approximation features
have been found effective, as listed in Table 3. Ef-
fective features found for group 2 include polar, sta-
tistical �variance, mean, skewness�, subspectral dip,
and wavelet-based entropy. The details of all the
features used are beyond the scope of this paper.
The interested reader is referred to Ref. 17 for details.

Table 1. List of Examined Featuresa

1-D and 2-D Features

Statistical
Mean Kurtosis Second moment
Variance Energy Third moment
Skewness Entropy Fourth moment

Co-occurrence matrix based
Mean Contrast Cluster shade
Variance Inertia

�contrast�
Cluster prominence

Energy Inverse
recursivity

Dissimilarity

Entropy Maximum
probability

Wavelet based
Mean Kurtosis Second moment
Variance Energy Third moment
Skewness Entropy Fourth moment

Fractal signature

Principal component
First Fourth Seventh
Second Fifth Eighth
Third Sixth Ninth

aRef. 17.

Table 2. List of Introduced Featuresa

Introduced Features

Diffuse reflectance Subspectral dip
Profile gradient Volume approximation
Point-source shift Polar coordinate

aRef. 17.



An overview of the features found effective is pro-
vided below.17

A. Statistical Features

Statistical features include mean �first moment�,
variance, skewness, kurtosis, energy, and other mo-
ments �second, third, and fourth�. These statistical
attributes are calculated for the entire image, and
subimages �image subblocks� for 2-D analysis. The
same attributes are computed for the entire spectrum
from a particular fiber, or a subregion of a spectrum

Table 3. Effective Features for Group 1 fr

Feature

Distinguish
Spectral Re

Pixels
�Wavelength

Biorthogonal wavelet energy �H� 460–50
�741–76

Daubechies wavelet skewness �H� 340–40
�682–71

Skewness 115–14
�574–58

Polar geometry �1-D� �area, fiber 7� 275–34
�651–68

Mean 115–14
�574–58

Volume approximation 480–49
�750, 75

aFD, Fisher distance.
bROCA, ROC curve area.

Table 4. Effective Features for Group 2 fr

Feature

Distinguishin
Spectral Regi

Pixels
�Wavelength, n

Polar statistical �third moment� 215–251
�fiber 7� �622–639�

�622–639�

Variance �fiber 8� 235–307
�632–666�

Mean �fiber 6� 375–393
�699–708�

Skewness �fiber 6� 250–259
�639–643�

Subspectral dip �fiber 6� 160–178
�595–604�

Wavelet-based entropy 285–384
�656–704�

Polar statistical �mean� �fiber 5� 190–208
�610–619�

aFD, Fisher distance.
b
ROCA, ROC curve area.
for 1-D spectral analysis, as well as for spatial curves
from multiple fibers at averaged wavelengths for 1-D
spatial analysis. The RSA has been used for subim-
age and subspectral feature computations.

B. Wavelet-Based Texture Features

Multiresolution wavelet analysis is a recently devel-
oped scheme18 that represents data at various scales
with different time or spatial resolutions. Single-
level wavelet transforms have been acquired for each
image, generating four subimages, each half in reso-

hich the Classifier Features are Selected

� FDa ROCAb FD � ROCA

1.53 0.95 1.45

1.52 0.94 1.43

1.53 0.90 1.38

1.47 0.83 1.22

1.45 0.83 1.19

1.28 0.88 1.12

hich the Classifier Features Are Selected

FDa ROCAb FD � ROCA

1.16 0.82 0.96

1.10 0.83 0.91

1.07 0.85 0.91

1.03 0.85 0.88

1.01 0.82 0.83

0.98 0.81 0.79

1.02 0.83 0.70
om W

ing
gion

, nm

5
3�

3
3�

2
7�
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6�

2
7�
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lution with respect to the height and width of the
original image. These subimages comprise one
coarse and three detail subimages. The horizontal
�H�, diagonal �D�, and vertical �V� component subim-
ages correspond to the high-frequency part, whereas
the coarse component subimage �C� corresponds to
the low-frequency part of the image. Statistical fea-
tures are then computed from each subimage.

In this study various types of wavelets have been
investigated, in particular, Daubechies and
biorthogonal wavelets. For the data set examined,
the mean and energy calculated from the biorthogo-
nal and skewness from the Daubechies horizontal
images have produced well-separated features for
group 1. Only the wavelet-based energy feature has
been found to be an effective feature for group 1 clas-
sification, since both the mean and energy features
produced the same outlier samples �correlated fea-
ture set� in the scatter plots. The entropy from the
Daubechies horizontal image has been found to be an
effective feature for group 2.

C. Introduced Features

1. Subspectral Dip
As can be seen from Fig. 4, the benign and the can-
cerous classes �group 1� contain local differences in
their single-fiber spectra. The region around pixels
87–142 corresponding to the wavelength range 560–
587 nm, for example, displays visible differences for
the benign and the cancerous classes �see Fig. 4�. It
was discovered that there is a prominent dip in the
spectral information for cancerous lesion images that
was absent or not so prominent in the benign lesions.
This dip is characterized and used as an effective
feature in separating the two classes.

We characterize the dip by first intensity-scaling
the region of interest and then finding the best linear
fit through scaled region. This method of line ap-
proximation is chosen because of its reduced sensi-
tivity to edge and outlier points in the spectrum,
which might otherwise adversely affect the subspec-
tral area calculations. The calculated line is then
moved by the mean of the scaled curve. We find the
area between the best-fit line and the curve by taking
the absolute difference between the two lines. The
spectral region is characterized for each fiber sepa-
rately. Scaling brings out the spectral changes in
the tested region.

2. Volume Approximation
We calculate this feature by finding the volume under
subregional areas, using the same method to charac-
terize the subspectral dip stated in Subsection 5.C.1.
In this case, the information from multiple fibers is
used to calculate the volume, incorporating the spa-
tial information. The volume is calculated by sum-
mation of the area under multiple-fiber spectra.
Only the conformational characteristics of the subre-
gional area are necessary for this feature; therefore
the subregional pixel values are scaled to 8-bit reso-
lution before the volume is calculated.
88 APPLIED OPTICS � Vol. 41, No. 1 � 1 January 2002
3. Polar-Coordinate Geometry
Polar coordinates are used to transform the image
information from the Cartesian coordinate system.
Polar coordinates provide radial and angular infor-
mation for each intensity point on the Cartesian sys-
tem, from the center of origin. Polar coordinates are
used to amplify the small angular changes in subre-
gions of spectra, hence providing a measure of change
within a given region in spectra between classes.
Angular representation of a subregion also brings out
spectral fluctuations.

4. Polar-Coordinate Statistics
The statistical attributes are applied to the polar
curves. Some of the polar-coordinate–based statis-
tical features have produced separable results in im-
age subregions. The RSA is used to find the best
spectral regions from individual fibers for a given
statistical attribute.

6. Classification

As revealed by the scatter plots, each of these fea-
tures generated false-negative or false-positive val-
ues. Using multiple features as the input to a
classifier reduces the sensitivity to single-feature out-
liers and minimizes the likelihood of such false pos-
itives and negatives.

A. Feature Conditioning

Correlation may exist among the multiple features
chosen. We applied feature conditioning to the fea-
ture vectors before feeding them into the classifier.
Also, feature conditioning further reduces dimension-
ality of the input feature vector. We achieve feature
conditioning by first computing the within and the
between scatter matrices, SW and SB, for different
combinations of effective features of Tables 3 and 4.
Then the separability measure, J, for the effective
features is calculated per group as19

J � SW
�1SB. (2)

Computing the eigenvalues and eigenvectors re-
vealed that there is only one prominent eigenvalue
when the effective features are linearly combined for
both groups; therefore the conditioned feature, x*, is
obtained from the most prominent eigenvalue, 
1,
and its corresponding eigenvector, v1, as follows:

x* � 
1
�1�2�v1	

T�x � ��, (3)

where v1 is a row vector, x is the original input fea-
ture vector, and � is the overall mean vector.

The scatter plots for the conditioned feature used
for classification are displayed in Figs. 7 and 8 for the
two groups. The corresponding ROC curves com-
puted from the Gaussian distributions are shown in
Fig. 9. The classifier is described next.

B. Bootstrap-Based Bayes Classifier

In the case of a limited number of samples and ob-
servations of these samples, the bootstrap method20

is used to generate multiple observations, x, of the



samples from the original data set. For a parame-
ter, �k, that is to be estimated, first B realizations of
bootstrap samples are generated from the original
observation by selection of random samples from the
original data set with replacement. This means
that in the newly generated sets some samples may
appear more than once, whereas others may not ap-
pear at all.

In the case of Gaussian approximation for the es-
timated parameter, �k, the mean vector, �k, of the
estimated parameter is calculated from the bootstrap
samples as follows21:

�k �
1
B �

b1

B

�k
b, (4)

where �k
b is the bootstrap estimation from the bth

bootstrap-generated sample set. The mean vectors
for the estimated parameters �mean and variance�
are then used in the Gaussian likelihood function for
classification.

The bootstrap estimation of feature parameters

Fig. 7. Scatter plot for the conditioned classifier input feature for
group 1.

Fig. 8. Scatter plot for the conditioned classifier input feature for
group 2.
has been applied to the effective features listed in
Tables 3 and 4, respectively, after feature condition-
ing. We generated 1000 bootstrap samples for each
class separately, using the conditioned features �sin-
gle input feature�. The results did not change when
10,000 bootstrap samples were generated. The
mean vector for mean and covariance of the gener-
ated samples are computed by Eq. �4�. For a single
feature, the covariance matrix is simply the variance.
The distributions for each feature can be obtained by
use of the bootstrap estimation for mean and vari-
ance and substitution for these values in the Gauss-
ian distribution equation.

The leave-one-out approach has been adopted for
classification. With this approach, a feature belong-
ing to a lesion is left out, and bootstrap samples are
generated separately for each class with the remain-
ing features. The unknown parameters �mean and
variance� are computed for the Gaussian distribu-
tions. The classifier is tested with the left-out fea-
ture. The classification rate �hit or miss� is
recorded. The procedure is repeated by means of
reinserting the removed feature, taking out a differ-
ent lesion feature, and regenerating new bootstrap
samples, until all the lesion features have been re-
moved and the classifier tested with all the left-out
features. We note that the leave-one-out method
provides a pessimistic estimate of the error probabil-
ity, in that the error calculated by this method is the
upper bound for classification error.18 A more opti-
mistic approach to estimating the classification rate
�low classification error� would be to use the resub-
stitution method, in which all the lesions are used in
generating bootstrap samples. The unknown pa-
rameters are estimated with the generated samples,
and the classifier is tested with the original training

Fig. 9. ROC curve for the features displayed in Figs. 7 and 8.
1 January 2002 � Vol. 41, No. 1 � APPLIED OPTICS 189



featu

1

features. The resubstitution method constitutes the
lower bound for classification error.18 Tables 5 and
6 show the bootstrap-based Bayes classifier perfor-
mance with different number of input features for
groups 1 and 2.

Using the bootstrap-based Bayes classifier with the
leave-one-out method, we correctly identified all can-
cerous lesions �100% sensitivity� for group 1. There
was only 1 false positive �1 benign lesion misclassi-
fied� in this group. Sensitivity is particularly impor-
tant in clinical diagnoses so as not to miss any
cancerous lesions. In group 2, 32 out of 34 cases
were classified correctly, with 1 false positive and 1
false negative. With the resubstitution method, the
classifier achieved 100% correct classification rate for
group 2 �all benign and cancer-prone skin lesions
correctly identified�. The same hit rate �22 out of 23
lesions correctly identified� has been reached for
group 1. The resubstitution method required fewer
input features to generate the best outcome in com-
parison with the leave-one-out method, as intuitively
expected. We note that including more features did
not improve the classification outcome. This is pri-
marily due to the reduced effectiveness of the added
features.

Table 7 summarizes the procedure to classify un-
known lesions as described in this paper.

7. Information Conveyed by Features

The nature of the acquired images and what they
represent play a role in determining the extracted
features and their effectiveness. The spectral na-
ture of the images collected via multiple fibers sug-
gests that there are particular regions in the images,

Table 5. Performance of the Bootstrap-Ba

Number of
Input Features Added Features

1 Biorthogonal wavelet energy
2 Daubechies wavelet skewne
3 Skewness
4 Polar geometric
5 Mean
6 Volume approximation

aThe classification rate versus the number of conditioned input

Table 6. Performance of the Bootstrap-Ba

Number of
Input Features Added Features

1 Polar statistical �third mome
2 Variance
3 Mean
4 Skewness
5 Subspectral dip
6 Daubechies wavelet entropy

aThe classification rate versus the number of conditioned input
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or spectra, that provide more information on the le-
sions than the entire image, since the analysis of the
entire image would average out some of the small
details present in spectral areas.

Correlating the effective features with the physio-
logical parameters requires a close look at the spec-
tral regions where these features are found to be
effective, and the tissue response to light �physiolog-
ical parameters� at these particular wavelengths.
An effective feature reflects how much the corre-
sponding spectral region �wavelengths� and spatial
profile �fiber position� in the image differ between and
within classes for a given lesion group. An effective
feature with a large performance value �product of
Fisher distance and ROC area, as adopted in this
study� suggests that the compared spectral and spa-
tial regions in the image display distinct variations
between classes, and similarities within classes;
therefore the effective features help in identifying
regions of highest distinction between and lowest dis-
tinction within classes. The next task is to look at
these spectral regions identified by the features
within the image and investigate which physiological
responses are known to occur in the found wave-
length range for both benign and cancer-prone le-
sions.

One reason for the success of the subspectral image
analysis can be explained by the absorption and scat-
tering properties of the analyzed tissue. These op-
tical properties are affected by the structure,
composition, and homogeneity of the tissue at hand.
The diffusely reflected spectral light exhibits varia-
tions in certain regions of the spectral curves depend-
ing on the hemoglobin content, nucleus size within

lassifier Designed for Lesions in Group 1a

Leave-One-Out
Hit Rate �out

of 23�

Resubstitution
Hit Rate �out

of 23�

19 21
21 21
21 21
21 22
22 22
22 22

res is shown.

lassifier Designed for Lesions in Group 2a

Leave-One-Out
Hit Rate �out

of 34�

Resubstitution
Hit Rate �out

of 34�

27 29
27 29
28 31
32 32
32 33
32 34

res is shown.
sed C

ss
sed C

nt�

featu



the cell, the structure of other microstructures within
the cell, as well as the homogeneity and compactness
of these structures, which are all known changing
parameters in cancerous tissues.12,22 Hemoglobin,
for example, has known absorption bands in the vis-
ible spectrum that peak at 540 and 576 nm �oxyhe-
moglobin� and at 555 nm �deoxyhemoglobin�.22 The
different hemoglobin-carrying blood content among
lesions could explain the spectral dips observed in the
diffuse reflectance polarimetric images from carci-
noma �cancerous� lesions that were generally absent
in the keratosis and wart �benign� lesions. This
could further explain the effective features, skewness
and mean, in the spectral region 574–587 nm for
group 1. Similar explanations could be given to
spectral variations in other regions of the collected
spectra, considering the dissimilarities in structural
and molecular content among benign and cancerous
lesions.

Researchers have shown that the direction and ori-
entation at which the light is collected will affect the
spectra of diffusely reflected light.23 In fibrous or
collagenous structures, for example, muscles, the ori-
entation of the light-collecting probe with respect to
the direction of the fibers within the tissue causes
variations in the diffusely reflected spectra. Al-
though the lesions are not fibrous in nature, the in-
homogeneities within the lesions could explain the
variance among the images and, hence, the features
collected from the same lesions by means of reposi-
tioning and reorienting the light-collecting probe.
This area needs further investigation.

In this paper, factors such as age, race, and gender
of the patients from whom data were collected were
not taken into consideration. Because of the limited
number of lesion samples, all the images were
grouped together in our analysis. The effects of age,
race, and gender on research results in multiple fields
are well documented. The melanin pigment attrib-
uted to skin color, for example, also has absorption
characteristics in the studied visible spectral region
and could cause further variations in the collected

Table 7. Summary of Procedure to Classify Unknown Lesions

Step Procedure

1 During clinical examination, determine the lesion
group �group 1 or group 2�.

2 Acquire at least three images from the same unknown
lesion and neighboring healthy skin. For each mea-
surement, remove and reposition the probe on the
lesion at random orientations.

3 Apply image calibration against camera and fiber re-
sponse.

4 Extract effective features from the unknown images
�use the spectral regions and corresponding effective
features listed in Tables 3 and 4 for groups 1 and 2,
respectively�.

5 Apply feature conditioning to reduce multiple features
to a single feature.

6 Classify the image with the one conditioned feature
value and the devised classifier for the group.
images even within the same class �benign or cancer-
ous�. Ideally the above factors must be considered
and data subgrouped accordingly.

8. Conclusions

Image-processing texture feature extraction provides
a computer-based method for separating benign from
precancerous skin lesions. Finding effective image
features that describe each class most distinctly is
one of the most challenging tasks in any image-
classification problem. In this study various fea-
tures have been extracted from benign �keratoses,
warts� and cancerous �carcinomas� skin lesion images
in group 1 in one and two dimensions. The same
features have been applied on common and dysplastic
nevi images of group 2. The analysis technique com-
bines effective features �features that effectively sep-
arated the two lesion classes� with an automatic
classification algorithm using a bootstrap-based
Bayes classifier.

The designed leave-one-out bootstrap-based Bayes
classifiers for group 1 and group 2 lesions have
achieved classification rates of 95.7% and 94.1%, re-
spectively, identifying 22 out of 23 and 32 out of 34
lesions correctly for the two groups. All cancerous
lesions have been correctly identified for group 1 �sen-
sitivity of 100%� with only 1 false positive �specificity
of 93.3%�. For group 2 there were 1 false positive
and 1 false negative, reaching a sensitivity of 95.2%
and specificity of 92.3% in the identification of com-
mon nevi and dysplastic nevi. The resubstitution
method has produced more-optimistic results with
100% correct classification for group 2. The hit rate
for group 1 has not improved with the resubstitution
method; however, the same results have been ob-
tained with a lower number of input features in com-
parison with the leave-one-out method.

The results are encouraging for the development of
a noninvasive skin lesion classification system that
dermatologists could use as an electronic second opin-
ion in clinical settings. This research has identified
effective features that could be used with the current
images. More images need to be acquired and added
to the current database to increase the confidence of
the findings.

This research has been supported by the Texas
A&M University Interdisciplinary Research Initia-
tive and by a grant from the U.S. Department of
Education. Institutional Review Board �IRB� ap-
proval was obtained for collecting skin images from
patients at the University of Texas MD Anderson
Cancer Center, Houston, Texas �IRB TAMU 2000-
207�. We thank the patients for their participation
in this research.
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